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CHAPTER 6

GROWTH AND DECAY OF RADIOACTIVITY
DURING AND AFTER IRRADIATION

I. Laws of Radioactive Decay — Exponential Law
(A) Sourer® Case

. Consider the cass of a radioactive nuclsus (1) decaying into a stable

nucleus (2): N
{1) ——- (2) (stab.) (6.1)

This oase can be compared to a monomolecular reaction. The
reaction rate (nuraber of disintegrations per second, D) is proportional
to N the number of atoms of (1) present:

dy

= -\ =D 62)
A is a constant, characteristio of the partioular radioactive species,
and ia called the decay constant, having the dimension of a reciprocal
time, #-1. The integral of this simple differential equation is given by

N{t) = Noexp (~X) (5.3)

Here, N({t) represents the number of atoms (1} at a time ¢, N° the
number at ¢ = 0. The radicactive decay is thus governed by an ex-
ponential Jaw. Combining (5.2) and 5.3) one can write:

D(t) == D® exp (—X) (5.4)

Measuring & fraction 2 of the real number of disintegrations (i.e. the
experimentally observed activity A) one obtains:

A =zD = z.\N
and
A(f) = A% exp (=) (6.5)

The coefficient z is called the deteotion coefficient and will depend on
the nature of the detection instrument, the efficiency for the recording
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of the partioular radiation with that particular instrument, and the
geometrical arrangement of sample and detector.

The characteristio “rate of a radioactive decay” may conveniently
be given in terms of the half.life T;,, i.e. the time required for an

initial (large) number of atoms to be reduced to half that value. Thus,
at{ = Ty, N = N%2 and

In} = =ATy, or Ty, = 0.603/4 (5.8)

.Tlu's hali-life can conveniently be determined graphically by plotting
Alt;a. ¢ on a semilog scale giving a straight line with a slope ~ A (Figure
5.1).
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Fig. 8.1. Radioactive decay of a single radionuclide (T';;, = 5.0 b)
Aft) = A% exp (—X)
log A() = log A*— Xt

8. GROWTH AND DECAY OF RADIOACTIVITY

(B) MixTURES OF INDEPENDENTLY DECAYING ACTIVITIES

In the above equations the radioactivity, corresponding to the
transformation of & single atomie apecivs, was considered. In the more
general case, the observed total activity is obviously the sum of all
the independent activities, i.e.

A=A1+A’+,.,nzlAlLrl‘}'z'A:N.'!"--. (5-7)

The detection coefficients 2;, 2 . . . can be quite different, depending
on the nature and the energy of the radiation of the different species.

For a mixture of several independent activities the result of plotting
log A vs. ¢ is always an upward concave curve (Figure 5.2). In the case
of two radioactive species one can write:

A(t) = A1) + 44() = A exp (~ A} + Adexp (—Ag)  (5.8)

Assuraing that (1) decays more rapidly than (2), ie. A > A,
equation (5.8) simplifies to

A(t) = ADexp (—Agl) (5.9)

after a sufficiently long time. Extrapolating this straight line in the

semilog plot to ¢ -0, ode can subtract the value 4,(t) for any time,
from the corresponding total activity 4; this allowa one to tind 4,
a8 a function of ¢, i.e. A? exp (~X;f). The complex decay curve is
analyzed into its two components, from both of which now, in the
usual way (¢f. Figure 5.2), Ty, may be determined.

Due to experimental uncertainties in the observed data, this pro-
ceduro is limited {0 mixtures of only two or three radioisotopes, and
even two component curves may not be satisfactorily resolved if the
two half-lives differ by leas than about a factor of two or if the rates
differ by a large factor. :

In Figure 5.3 a complex decay curve is analyzed into four com-
ponents. The accuracy in the determination of the half-lives of the
short-lived components is however poor.

During the past years a number of computer methods for analyzing
multicomponent zadioactive decay curves have been developed. As
expected, the earlier codes had rather limited capabilities, while the
later modifications became increasingly complex and sophisticated
(see Chapter 9, section III, C, 3).

|
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Fig. 8.2. Analysis of composite decay curve (mixture of two independently
decaying activities)
& = componits decay curve: A(f) = A exp (~X,t) 4+ 47 exp (= 1yf)
b = Ionger.lived component: 4 ,(i) = A} exp(~Ay)
¢ = shorter-lived component: A,(t) = A} exp (—A;1)

Normally a least-squares fitting operation is performed (1,2). The
data of a radioactive decay curve consist of m measurements of the
counting rates 4, of the sample at times #;, If n independent nuclear
species are present, then the sst of data satisfies m equations of the
form

J=n
A =le A9 exp (= Mty) + Zs (5.10)

where an individuel term in the sum, 4] exp (—A;#) represents the
contribution of the jth component in the total activity at time ¢;. The
residual Z; at that point is due to statistical fluctuations and experi.
mental errors. Since the = coefficients 4] enter these equations linearly
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Fig. 5.3. Decay curve of irradiatéd ruthenium.

& solution by the least-squarez method is possible. The condition for
such a solution is that

{=m |
tE1 W2} = minimum (6.11)

where IW; is the weight assigned to the square of each residual (W =
1/o?). 1t is convenient to adopt & matrix notation for furthér calcula-
tions. The code is normally intended to be run by the “monitor”
gystem, i.e. all reasonable errors will cause & suitable comment to be
printed by the machine before it takes appropriate action.

The data needed to begin the least-squares fitting caleulation
include: time, counts, length of count, background, and the half-livea
for each component. The data obtained from the calculation include:
the activity of each component. at the time of the first count, the
deviation of each point from the caloulated curve, weighted by 1/o*
for thet pcint and the “error matrix”.

On the average the machine resolution of decay curves gives better
results than those obtained by hand. Not the least advantage is the
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speed of the caleulation. On an IBM 7090 a typical calculation involving
30 data points and including data read.in and evaluation, resolution of
three components, recalculation if necessary, print out of answers and
tabulaticn of collected data will take about ten seconds of machine
time.

In none of the above methods does the number of components
“fall out"” of the analysis and if the number of componenta is not known,
any "‘accurate” estimate of the parameters begins to lose its meaning.
The two essential difficulties inherent in this technique are, that one
must deal with data that only approximate A(f) over a finite range in ¢,

. and that the exponential series possessea such strongly non orthogonal

properties, that the parameters are extremely sensitive to minor .

fluctuations in the data. The approach of Gardner ¢ al (3,4) is based
on the fact that the exponential series can be represented by a Laplace
integral equation:

A = R Al oxp (=M = [T oW oxp (-)dd  (512)

-1

Here g{A) ia a sum of delta fanctions, but due to the error inherent
in the experimental estimate of 4(¢) and in the numerical computations
necessary to obtain g{1), a plot of g(A) vs. A appears in the form cf a
frequency spectrum. The presence of a true peak in the spectrum
indicates a component, the abscissa value at the center of the peak
being the decay constant A; whereas the height of the peak is propor-
tional to the coefficient AJ. The function g(A) is obtzined by Fourier
transforms, as deseribed in full detail by Gardner et al {4).

This method is applicable both to the decay of independent species
and also to the case of growth and decay chains, One advantage of the
method lies in the fact that it is not necessery to have initial estimates
of the parameters (particularly X;) before the analysis as in curve
fitting procedures, such as the non-linear least-squares method.
Furthermore it is an approach where the number of components
sutomatically “falls out” of the analysis. Full use is made of the
acouracy inherent in the data since they are treated as a whole, as
opposed to some “subtraction type” methods, wherein all but the

.

shortest-lived components are determined nsing fewer points than are _

actually available. Finally, the ocourrence of very similar A values does
not endanger the entire solution ss in other methods.

AL7
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5. GROWTH AND DECAY OF BADIOACTIVITY )

II. Growth of Radioactive Daughiers

(A) Two Successive Droays
Consider the simple case of a radioactive species (1), which decays
to produce another radioactive speciea {2):
(1) —-s (2) 2+ (3) (stable) (5.13)

Decay of (1) and growth and decay of (2) are described by the follow-
ing differential equations,

dN.

'El = ~AN, where N, = N0 exp (—Ay) (5.14)
ety - 00, (5.15)

as the second species is formed at the rate at which the first decays
(A, N,) and decays at a rate ~A.N,.
From (5.14) or (5.3) and (5.15) it follows that

d¥,

- 7 AV g = AN exp (—Ay) (5.16)

This is a linear differential equation of the first order. The general
form of this so-called Leibnitz equation is given by

% + Py=@Q (Leibnitz equation)

where P and Q can be functions of # and explicitly independent of g,
or constant. As this equation is of great importance, it will be treated
in detail. The general solution is given by:

y=..exp(-fpdz)fgexp(jpdz)dz+c.exp(-jpdx) (5.18)
In the case of (5.16): y = N, 2=, P =}, @ = A N]exp (=Ay).
Thus

Nyft) = exp (=As) [ WD exp (— 18 exp (A i + Coxp (—As)

2P foxp 0y = 4t = 1 + Coxp (-2
| Bl |

= Af‘_Nal [exp (= A) = exp (=4l + Coxp (=)

(6.17)

Ny(t) = exp (—24)
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Finally, if t = 0, N} = 0 4 0, 80 C = N}
The final aclution ia thus given by

N.(t)- N°[orp(-ht)-exr)( =At)] + N3exp (—Ay)

(5.19)

Equation (5.19) is the general expreasion for the decay of & radio-
nuclide, formed from another radionuelide,

The last term gives the contribution at any time from the daughter

atoms present initially. Assuming that, for ¢ = 0, N = 0 (the case

of a daughter activity, growing in the freshly purified parent fraction),

equation (5.19) is simpified to

Nyf) = N} [exp (~Ayf) — exp (—2)] (6.20)

In equation (5.19) and (5.20) two general cases can be distinguished,
depending on which of the two substances (parent or daughter) has the
longer half.)ife. This discussion will be limited to equation (5.20), i.e.
assuming that N} = 0.

1. Transient Equilibrium
Al < -A’, e-g. (Tu’)! = 5.0 h and {Tﬂ’). = 0.5 h, i.e. A. = IOAP

Consider first the number of parent atomns as a function of time.
At ¢ m 0, N, = N} and the corresponding activity 45 == L, N (e.g.
A = 90 cpm). -

Hence, as a function of time, one can write N, = N{ exp (—A) or
A, = A} exp (~Ayt) (Figure 5.4 curve aa), assuming z; = L.

To caloulate the daughter activity in the parent-plus-daughter
fraction, equation (5.20) must be applied. After ¢ becomes sufficiently
large, exp (—A,t) is negligible compared to exp (—A,f), hence:

N,

Nlexp (=) and A,,.,AA‘A'A N exp (At}
I §

M
A' -— Al
assuming z; = 1. Substituting A, = 10A,, this becomes:

Ay %{) AN exp (—At) (Figure 5.4 curve l;b)
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Fig. 8.4, Translent equilibrium; (T}, = 50 h and (T,;,), = 0.8 h;
(Ay = 101,)
curve aa: activity dus to parent
ourze bb: daughter aotivity in the parent-plus-daughter fraction
eurve b’bb: daughter activity growing in freshly purified parent fraction
curve oot decay of freshly isnlated daughter fraction
curve dd: total astivity of an initially pure parent fraction.

i.e. the daughter activity in the parent.plus-daughter fraction decays
with the half-life of the parent. Extrapolating this straight line in the
semilog plot to ¢ — 0, one ﬁnds

1—0 LN = 100 opm,

since AY == 90 opm.

For amall values of ¢, the general equation (5.20) has to be applied
to calculate N, or Ay; actually, {5.20) can be written as the algebraic
sum of two exponential terms:

10 10
4, = 3"‘12@ exp (=At) -~ r AN exp (=),
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The first term is represented by ourve bb (Figure 5.4). The second
term which has the same extrapolated value as the first one

(%)A,N‘,‘att=o). .

describes the decay of a freshly isolated daughter fraction (separated
from the parent), and is represented by curve cc.

Thus, curve bb minus curve co { =curve bb’) represents the daughter
activity in the parent.plus-daughter fraction as a function of time.
At t = 0, A, = 0. After ¢ becomes sufficiently large, 4, = ourve bb;
between these extreme wvalues, there is a continuous transition.

The total activity of an initially pure parent fraction is given by

10
A=A+ 4, = \NYexp(=2) + 'b-f\xN?“P(“M‘)
10
— -5 MV exp (=A4)

or, graphically: curve aa plus curve bb’ = curve dd (Figure 5.4) e.g.
at t =0, A= A%+ A3 = A3 = 0 cpm;até =50h, 4 = 45 + 50
= 95 cpm,

Remark: The figure assumes z, = zy = 1 and N} = 0 (initially pure
parent fraction).

Conclusions for iransient equilibrium. After ¢ becomea sufficiently
large, the daughter activity and the total activity decay with the half-
life of the parent. The daughter can, of course, only decay after being
formed; 80, ita decay rate is determined by its fomatlon the latter is
equal to the decay rate of the parent.

In thess conditions, the ratio “number of atoms of parent to number
of atoms of daughter” is constant.

N, A
S AR NEN

Multiplying both numbers of this equation with z4A,/z;4,, one finds

an analogous equation:

4_1 . ZyAsV g - Zgdy
Al zlthl zl(A' bl Al)

(5.21)

or

5. GROWTH AND DECAY OF RADIOACTIVITY

%144 Ay
2edy A= Xy
Notice, however, that the right-hand sides of equations (5.21) and
{6.22) are not the same.
In the case of the example (2, = z4, Ay = 10A,), this becomes
Ay 10, 10

(5.22)

“and

Atd,_A_ 1D A, 44, 419

4, Ay 9 4, A, 10
which can be verified on Figure 5.4.

2. Secular Equilibrium

If Ay € A,, oné has a limiting case of radioactive equilibrium and
the same considerations can be made as in IT, A, 1. It is called secular
equilibrium. Setting (T;,), = <o and {T'y;,); = 1.0 h, the number of-
parent atoms is given by

N, = N?exp (—=Af) & NY (xconstant)
a3 A, is very small, The I;a.rent activity is given by
4, m A% = A N? = constant = R (Figure 5.5 curve aa)
i.e. the parent activity does not decrease measurably during many
daughter half-lives.

After ¢ becomes large compared to (T'y,)s the daughter activity
in the parent.plus-daughter fraction can be caloulated from

R
Ny=m —— — Nlexp (-~ Alt)z—and.d. R

A
)l’ hand A
(in Figure 5.5, same curve aa as for parent activity). Extrapolating
this constant to ¢ — 0, one finds of course, R.

For small values of 4, the general equation (5.17) must be applied to
calenlete Ny or 4,:

AN
Hy = 20 foxp (= 1) — exp (~A41) & 30 —exp(=A)] (629
and

Ay = Rl — exp(~Ag)]or 4, = B —~ Rexp (—Ay)
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Fig. 5.5, Beoular equilibrium; (T'y;,), = ¢ and (T'y,), = 1.0h
curve aa: activity due to parent
' curve co: decay of freshly isolated daughter fraction
curve ba: daughter activity growing in freshly purifisad parent fraction
curve dd: total activity in an initially pure parent frastion.

Thus, one can conclude that 44 is given by the difference of a con-
stant term R (Figure 5.5 curve aa) and an exponential term R exp
(—Ayl). The latter term, which has the same extrapolated value as the
first one (R at ¢ = 0), describea the decay of a freshly isolated daughter
fraction and is represented by curve co.

Curve sa minus curve cc = curve ba = A,.
At t = 0, 4, = 0; for ¢ sufficiently large, A4 = curve aa = B,
The total activity is caleulated as follows:
A=A4,+ A4, = R+ R~ Rexp(-2Ay)
j.e. eurve an plus curve ba gives ourve dd.

At tm0: A= R+ R Rea R (m=A,); for ¢ sufficiently large:
A=R+ R~0=2R

5, GROWTH AND DEOAY OF BADIOACTIVITY

Between these extreme values, there is a continuous transition.
Figure 5.6 assumes z; = z, = 1and X3 = 0.

3. Case of no equilibrium
A > Ag 68 (Tyys)y = 0.5hand (Pyy)y = 6.0h,ie. A, = 10A,,

Further assume: z, = z, = 1 and NQ = 0.
The number of parent atoms as a function of time is given by

Ny = Njexp (-Af)
and the corresponding activity by
A, = A\ NJ exp (—Af) (Figure 5.8 curve aa; 43 = 500 ¢pm)

The daughter activity in the parent-plus-daughter fraction is again
calculated from equation (5.20). After ¢ becomes sufficiently large,
this equation is simplified to:

Ny=

A AA
= Nyexp(—Ay) end 4y =5 “ N{exp (—2g)
1= Ay~
In the case of the numerical example, this beoomes:

Ay = }g A N%exp (—Ayt) (Figure 5.6 curve bb).

This means: the daughter decays with its own half-life. Extrapolating
thia straight line in the semilog plot to ¢ — 0, one finds
).,No = -'\‘—No- A’ = 100 cpm.

For smaller values of i, the general equation (5.20) must be used;
A, is given by the difference of two exponential terms: '

: Ad
Ay = =5 Nilexp (~A4) ~ oxp (~Ay)]
.M 1

- AN AN?
Asﬂ—g‘- xp (- 4\:‘)--—9—0113( At)

The first term is represented by curve bb (Figure 5.6), The second
term, which has the same extrapolated value as the first one (100 cpm
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Fig. 5.6, Caseof no equilibrium (Ty,); = 0.6hand (Tyre)s = 5.0h; (3, = 101y).

ourve aa: activity due to parent

curve bb: daughter activity in the parent-plus-daughter fraction
curve b’b: daughter activity growing in freshly purified parent fraction
curve db’: total activity in an Initially pure parent fraction.

at ¢ = 0) is 1/9 {(=A,/(A; = A,)) of curve aa, and is represented by
curve a‘a’. Curve bb minus curve a’a’ = curve b'b = 4,.

Att = 0, A; = 0; after § becomes sufficiently large, 4, = curve bb.
Between these extreme values, there is a continuous upward eoncave
curve,

The total activity ia given by:

A=Ad, + Ay =2a+bb=db

At t = 0, A% = A7 = 000 cpm; after ¢ becomes sufficiently large,
A = A, {curve bb),

§. GROWTH AND DECAY OF RADIOACTIVITY

Remark: Observing in practice the total activity of an iilitially pure
parent fraction, one obtains in a semilog plct a curve as db, Aftera
sufficient time, the longer-lived daughter activity entirely dominates
and its half life, (T';,)3 = 6.0 h, may be read from this portion of the
decay curve.

Extrapolsting this straight portion to ¢ — 0, one finds

Ad ZgAA
et it tter ———— NY.
A =M or better AI_)"N}‘

Extrapolating the first part of the total decay curve to # -0, one
gets
A? = A, N? orbetter 2z A, NT.

From these two equations follows:

4} 2N, =2y ! _'\t =,

= 5.24
Ay 230 AN} zs Ag (6.24)
If A, > A, this reduces to
Az Az (Ty)
___'1}" =10, 01 B N (5.25)

Az zl.Al zg (Tys)y

i.e. graphical interpretation of the total decay curve enables one not
only to find (2'y/4) but also (T'y;y)y, provided z; and z, are known.

In the numerical example one finds (T'yy); = 5.0 h (see semilog plot,
Figure 5.6). A/, A3’ = 000/100 = 9, thus (A; — Ap)fAy = 9; A, — Ay
= OAy; Ay = 104, (if 2, = 2z4) or (T'yyy)y = 0.5 b,

{B) Maxy Sucorssive DECAYS

Consider a series, where transformation from one member to another
ocours by radioactive decay,

L

M A A,
1) s @) s (3) s .. (1) —> (5.26)

The rates of nuclide transformation are described by the following
set of differential equations:
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==~
= AN = AN, (8.27)

-—--_A‘N’_A'N' ete,

where N,(!) and N,(t) are given by equations (5.3) and (5.19) respec-
tively. Substituting (5.19) in the third differential equation, N ,|¢) can
be caloulated, This substitution method of the i** differential equation
into the (i + 1)* is, however, rather cumbersome. H. Bateman (5)
has given the solution for a chain of n» members, assuming that at
t = 0 the parent fraction alone is present, i.e. N = N = ,., N = 0.
This solution can be formulated as follows:

fun
Na(t) = 2,A0,. .. A...,N‘;EIG. exp [~ Adf) (5.28)
where: i== ] ., -
G "HT,TX. (¢ # 5 {6.29)
Ezample 1.

Case number (5.13), i.e. a chain of only two members, can of course
be treated in the same way, with the special assumption that N3 = 0.

1 1
Cy= =
' ’\a“/\x. o Ay = Ay

o o[esm (=) | exp(=Ag)
¥ A‘Ng[ T M Y ]

A .
T, R Exp (- ) — exp (= 2)]

This is identical to equation (5. 20) -

E:uampk 2. )

Calculate N, as a function of time for a chain of three members,
assuming that N3 = N3 = 0 at ¢ = 0.

Applying equations (5.28) and (5.29), one finds:

6. GROWTH AND DECAY O¥ RADIOACITVITY

1 1
C, = 10y = ;
P = A0 =A)" T (=) =2y
i
0'=

‘(“1 - A} (As - Aa)

exp (= A,0) oxp (= Asf)
= A .
¥il) ’No[(a TN P =) T = A (e = A

xp (—Ay) ]
)

MR Ry Ay
Remark: If a solution is required for the more general case with N7,
N3... NS # 0, one can construct it by edding to the Bateman solution
for Ny in an n-membered chain, s Bateman solution for Ny in an
(n — 1)-membered chain with species 2 as the parent (thus ¥, = N2
8t ¢ = 0 replaces N9 in equation (6.28)), and an analogous Bateman
solution for Ny in an (n — 2}-membered chain with species 3 as the
parent (N, = N3 at ¢ = 0 replaces N7 in equation (5.28)), eto.

(C) BrawcatNg DECAY

Consider a radionuclide (1), decaying in two different ways forming
radionueiides (2) and (2') respeetively.

(2')—(3)
(1) (5.30)
a A (2) > (3)

A, and A are partial decay constants, related to the formation of (2)
and (2') respectively; (2) is formed &t a rate A,N,; (2) at a rate A{N,;
(1) decays at & rate (A; + A}N,.

Applying the Bateman equation to such s chain, one , must replace
equation (5.28) by

f=n
Nalt) = ARAS ... A‘,“,_,N‘I"EI s exp (—Ad) (5.31)

i.e., the A's before ) must be replaced by partial decay constauts
(A*): X* is the decay constant for the transformation of the s'* chain
member to the (i + 1) one, In the chain (1)-(2')~(3') (5.30), A’ is
equal to Aj, but A, (5.31) = (A; + Aj) (5.30).
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If a decay chain branches and mbsqquently the two branches are '

Jjoined, the two branches are treated by this method as separate chains;
the production of & common member beyond the branch point is the
sum of the number of atoms from the two paths. (See for instance
III, C, 2 and III, D, 2).

I, Transformation in & Neniron Flux

These transformation equations will be stated for the case of &
neutron flux. They are, of course, equally applicable for any other
activating particle.

(A) Sneery Case

Consider first the simple case of a transformation in & neutron flux,
represented by the scheme

(1) --‘-"-» (@) --:_L» (3) (stable) (5.32)
Ezample: **Na (“:‘ UNa —— "Mg (stable).
n,¥

Thus, stable nuclei (1) are aotivnted by neutron capture (cross
section ¢,) and transformed into radioactive nuclei (2), decaying to
the stable nuclei (3) (decay conatant A,).

1. Solution of the Leibnitz Equation

During irradiation, the growth of nuclei (2) is proportional to the
activation cross section oy, to the neutron flux ¢ and to the number of
atoms N, (thus go,N,); one can assume that in most cases N, remains
constant during the irradiation, i.e. that the hurn.up is negligible
(N, = N?). On the other hand, the radioactive nuclei (2) decay during
the irradiation process at a rate AN, Consequently the following
differential equation can be formulated:

dN
< = endl = AN, (5.33)
b

Thia equation is of the general form (5.17), where z = ¢, (irradiation
time), P(z) = A, = constant, Q(z) == po,N? = constant, and y = N,.

-

e — e

——

5. GROWTH AND DECAY O¥ RADIOQACTIVITY

The solution is given by:

Nolts) = oxp (=Ay) [, ol exp (1) dty + O exp (=)

Ny(ts) = NOGIP (—~Asts) [exp (Aghs) — 1] -+ Cexp (—Aqts)

WI .I[l

Nyfbs) = exp (=Agts)] + Cexp (—Asy)

Finally, if #, =0,Ng =0+ 0, hence C = N},
So, the final solution is given by

N ) = TR exp (<20 + Mowp (=M)  (534)
Ifatty =0, N3 =0, equatmn (5.34) is simplified to
Nt = ﬁN—?[I —exp(=Ags)] oL (838)

The disintegration rate of the nuclei (2) as a funcmon of the irradistion
time ia given by:

Dyfts) = A4l y(ts) = ga, NP [1 — exp (—A4h)] (6.36)

The factor 1 — exp {~A,fs) is called saturation factor 8. For 2, >
{Ty2)2 xp (~Ayfp) -0 and 8 - 1; hence D, reaches a maximum,
Forip € (Tyy)p 5P (—Ags) & 1 — Afpand 8 = Ayty, i.e. the activity
increases proportionally to ¢, The disintegration rate after an irradiation
time ¢, and a waiting time £ can be caloulated, by substituting (5.33)
in (5.4), setting £, = fp: ‘

Dy(ts,#) = Dyfts) . xp(=Aqt) = g, NT[1 — exp (—A,15)] . exp (—=A4t) _
(6.37)

(see Figure 5.7), )

2. Solution by the Generalized Bateman Equalion

The problem can also be solved by means of a generalized Bateman
equation (5.28), a8 propossd by Rubinson (6). For that purpose, a new
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A lty) = 9o N (1= exp (—Ash)]
Ayl 1) = ga Ny [1— exp (—Agh)] exp (—Ay)

modified “disappearance constant” is introduced: A = A + ¢o. If one
considers N atoms of a radioactive species, with a decay constant
A {s-1) and a total (effective) reaction cross section o (om?) in a constant
neutron flux ¢ (¢m? s-2), the disappearance of this apecies is no longer
governed by radiocactive decay alone (AN s-1); the disappearance by
the transmutation reaction must also be taken into account (palN -3},

So, the total rate of disappearance is given by (A + po)N 8! = AN s

(setting A + o = A). A can be considered as a modified **disappearance
constant”, If a given nuclide dissppears by a nuclear reaction only,
A = go; if a given radionuclide disappears by radicactive decay only,
A=A

If one considers a chain in which the transformation from one
number to the next occurs by a nuclear reaction and by radioactive
decay, equations {5.28) or (5.31) can be applied, provided that X; or A?
is replaced by A¢ = X + poy or AY = A} 4 pof, where the asterisks
serve as & reminder that in either branching decay or branching
activation A? is the partial decay constant and of is the partial reaction
oross section.

4

ke

6. GROWTH AND DECAY OF BADIOACTIVITY

Assuming N3 = NJ = ... N3 = 0, the solution is given by:

f=n
Nﬂ“b) = AI.A: e A;"XNg‘ZIG‘ oxp (—Ai‘b) (5 38)
where = e
.C’;=}:[1A’_A‘ U3 .

Applying this procpdure for the simple case (5.32) one finds:

Ay = Al = go,
A"’A'
Thua
1 1 ‘
0= =
A=A A=y
1 1
0, = = -
A=A Ay — po
Henco 3 ] z

Nt} = A}NT[C, exp (—Ats) + C4 exp (=Agts)]

1

N?
Nyty) = A:"" o exp (—pouts) ~ exp (= A,t0)

In practically all cases (flux and cross section not extremely high,
irradiation time not extremely long) one has A, > ¢ 0. Consequently
the Iast equation can be simplified to:

7
Nifte) = 521 - oxp (-2

corresponding to equation (5.36). The disintegration rate after & waiting
time ¢ is already given in equation (5.37).

(B) GrowTH of A Raproactive DavonTER IN A NEUTRON FLUX

Another case of transformation in a neutron flux, whicix is also of
practical interest, is represented by the scheme:

M= 2 i:-a- 3) -% (4) (stable) (6.40)
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where F, is the fraction of disintegrations of nuclides (2) which pro-
duces nuclides (3).

Example: et
199y “b> 19D am> 19%Ay * m} 1#9Hp (stable)
() A -

Indeed, half-lives, nature of the radiation, chemical properties, ete.
make it sometimes preferable to measure the daughter (3) activity
for the determination of element (1), instead of the activity of nuclide
(2). The determination of platinum from 1%%Au is a typical example.

Calculations of this case will be given in two ways: 1. by describing
the rates of nuclide. transformation by differential equations of the
general form (5.17), and substituting the solution of the first differential
equation into the second, ete.; 2. by applying directly the Bateman-
Rubinson equations,

1. Solution of a Set of Leibnitz Equations

The growth of the number of nuclides (3) as a function of irradiation
time #p ia formnulated by the following differential equation:
' dN
=2 = FAaNy — AN, (5.41)
where N 4(tp) is given by equation (5.35). Substituting (5.35) into
{5.41) gives:
d¥v,
FTN = Fypo N[l — exp (=A;t)] — AN,
This is of the general form (5.17), with & = ¢y, y = N, P(z) = Ay =

constant, Q(z) = Fpo N [1 — exp (— A}l
Integration gives

N y(ta) = oxp (=Agha) [Fupou] [ oxp (Asto) dis
— Fypo,9 [ exp (—Agte) oxp (Aats) dis] + NG exp (~Ast)

Agdp)—1
Nolt) = Fypo, 3 oxp (=) [“P%l—-
3T M

5. GROWTH AND DECAY OF BADIOACTIVITY

Ny =L gl ‘{

Agds)

~ oxp (- A,tm} + N exp (= Agts) (5.42)

»
Nyfto) = —"”L— ) 1 = exp (= 2a)] = AL — exp (=2}

AslAy =
(543)
it NY = 0.
For the disintegration rate of radionuclides (3) as a funetlon of
irradiation time, the following equation holds:

{As[1 ~ exp (—A4t2)] — Mgl ~ exp (=]}

F N
Dylty) = :’”"

(5.44)

2. Solution by the Baleman—Rubinson Equalion

The same result can be obtained by application of equations (5.38)

‘and (5.39).

Ay = A} = goy

Ay = ); (presuming that nuclidea (2) are not activated)

A} = Py,

A, = X, (presuming that nuclides (3} are not activated).
Hence:

o L L
! (Ay = o) (As — ‘P"z) Aghy
1 1
Cy= -
! (poy = Ag) (A3 = Ay) ~ As(Ag = Ay)
0, = 1 1

(301 — A3) (s — A3)  AslAs — Ag) -

Simplification was npphed assuming that burn.up is negligible
(A> po).

Thus, if NJ = Nf.,' = ( one can substitute these values into equation
(5.38).
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- exp (~@o,tp) exp(=Auds) exp(—Asty)
Milte) = F """‘Ng“’[ W +A.(A.—A.>"a,m.—a,)]

Fpo, N} 1
Ny(ty) = "'::‘ . {exp(—wlta) * oy Paes (=)
~ Ay exp (")‘:tb)]}
F 90, N}
Nalts) = $s (A [oxp (—gauty) — 030 (= Asto)]

+ Aglexp (—Ags) — exp (—go,ts)}}

As normally exp (—¢ols) = 1 (burn-up negligible), this result is
identical to equation (5.43).

For the caloulation of the number of atoms N, at any given time ¢
after the end of the irradiation, one must use the general equation
for the decay of a radionuclide which produces a radioactive daughter,
i.e. equation (5.19); for this particular application ¢, = 5, thus NJ =
Nofte), N: = Ny(t).

Hence, for the scheme (5.40), equation (5.19) must be written in the
following way:

N,t) = )

+ Ny(ts) exp (—2A4f)

where N,(t;) and N4(ty) are given by equaticns (5.35) and (5.43).
Consequently, N ,(¢s, f) can be calculated by substitution of (5.35) and
{5.43) in the above equation. The assumption Fy = I will be made here.

N ofts) [exp (= Ayf) = exp (=A4t)]

N}
Nytto, ) = 211 = exp (=2t exp (=) = oxp (=2)

PN N - -
+ A‘(‘\a - A.) {Ai[l exp( Attb)]
= Aa[1= exp (—Aty)]} exp (—2Ay)

po N}
Nylto, 1) = m {A[1 = exp (= Agta)}fexp (= Ayt) = exp(~A)]

« 4 Ayt — exp (—Agdn)] exp (- Ayf)

— Ag[l — exp (=Agp)Joxp (~Aqt)} -

L
5. GROWIH AND DECAY OF RADIOACTIVITY -1‘3::;}9;#

7t

Nyts, ) = "“—“-’Ei—{la[l exp (—Aqhs)] exp (—A4f)

Ad(dq =
=A;[1 —exp (—Ads)] exp (—2y)}  (545)

The determination of an element by measuring the activity of the
daughter (3) is eapecially useful, if (2) is shorter-lived than (3), i.e.
Ay > A, Besides, (2) is generally irradiated to saturation in that case,
i.e. exp (—A4fp) = 0 and [1 — exp (—Ay)] — 1. If the waiting time is
long, 5o &3 to sllow the nuclei (2) to decay completely into nuclei (3),
one can simplify the above equation:

(:».:)zf;" g e exm (=148 = A1 = exp(=Dtpllexp (=)

Nafte, £} zw: 1[1 — exp (~Adp)] exp (— 4\:‘) (5.46)
Or

Dyftn, t) @ NY[1 — oxp (—Asta)lexp (—Aqt) | (6.47)

This corresponda to equation (5.27).

(C)‘ BraXNCEING ACTIVATION

Ancther frequently occurring case is represented by the follomng
activation scheme:

)
o
D
(1) €: Fu . (5.48)
RN

(3) ——» (4) (stable)
i.e. the radionuclide (3) is either formed direotly or from an isomer (2).

Example: 192,

4
e 1.T.100%
a,

145m
]

i
Tantpy ZIERD 103Py (stable)
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Again, caleulations will be given in two different ways.

1. Solution of a Set of Leibnitz Equalions
The growth of the number N5 of nuclides (3) as a function of irradia-
tion time is described by the {ollowing differential equation:
vy
d‘—' = F AN, + polN? — AN, (5.49)
13

where N, is given by equation (5.35). Substitution of (5.35) in (5.49)
again yields a differential equation of the general type (5.17):

. .
“&f 4 ANy = Fypa N [1 ~ exp (—2Ahy)] + goiN?

with 2 = {, y = N,, P(z) = A, = const,, and ¢(z) = second term of
the above equation.
Assuming N§ = N? = 0, one gets after integration between 0 and ¢):
- ‘ .
Nyfts) = exp (—Agtolp? [o,Fy [ oxp (Asts) s

- c,F,ﬁ: exp (A; ~ A dly + ci I;' exp (A fy) dt;]

Nyfts) = oNY exp (—Aqta) { ﬂ;[exp;’ ats) ]
_ Peofexp 3 = Mo = 1) _ oifexp (Agh) ~ 1]
As — Aq i
Thus: ‘

Dy(ty) = N} {(Fl"l + o1} [1 — exp (—A4t)]

Ay

2, Solution by the Baleman-Rubinzon Egualion

The method of Rubinson can be appliod as well. In this case, the
same remark holds as the one given in section II, C, for the Bateman
equation (branching decay): if a decay chain (transformation chain)

—F'T}t\"fexpf-lala) - exp(-A,:,,)]} * (6.50) -

{
5. GROWTH AND DECAY OF RADIOACTIVITY -I:QQ}

" branches and subsequently the two branches join they are treated as

separate chains, The production of & common member beyond the
branchmg point i8 the sum of nuclides from the two paths.
These two chains are respectively:

@, @) 2, and )L, 2,

So, N,(f) must be caloulated fur each of the two chains, and after that,
the results are sumimed. The solution for the first chain is given by
equation (5.43) or (5.42), for the second chain by equation (5.35) where
2, has to be replaced by A,, and o, by 0.

Nyt = T ‘{u—exp( M)

A 18
~yfemn(=A) -exp(-mn} + B - oxp (= A

This is, of course, equivalent to equation (5.50).

In practice the isomerio form (2) is generally shorter-lived than (3),
i.e. Ay > A, (e.g. 19%%Ir, 19%]r), Moreover, (2} is usually irradiated to
saturation in that case (ip 3> (T'ys4),) OF 6xp (—Agy) — 0. Assuming
that (2) has completely decayed into (3) after a suflicient waiting time,
one can simplify equation (5.50):

NY Faopd
Hyto) %'—‘{(F.cl + o)l - exp (=A)] = =1 exp (-A.ta)}

Ne
Ny(ts) » 'P——A 1 [F,al + o1~ Fuo, exp (—Agds)
3

A
— o; exXp (—A4lp) ~ Fa"'l“\—’exp ("Aa‘b)]
2
oN? As
Nyfty) = -gl[j':"z + of ~ (Fs"’x + Fyoy 2 X + o1} exp (— Aafb)]
oI} . '
Nyt % Z Py 4 o) [L = exp (~Ast)] (5.51)

because o, -:—' Loy
2
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The disintegration rate of nuclide (3) as & function of irradiation
time is then given by -

Dylts) % 9N} (Faoy + o) [1 — exp (—2A4ty)] - (5.52)

which has the same form as (5.36).
In other cases is A; <€ Ay and usually 83 3> (Ty13) s > (Ty4)ss 0.8

v LR,

14Rh - 104Pg (stable)

So, other aimphﬁca.t)ons in equation (5.50) ere possible: exp (— /\,t;,)
and exp (—Agtp) > 0:

Dy(ty) % (Faoy + c})eN} . (6.83)

Radioactive decay gives rise to a parent-daughter relation, so that
D,(ts, t) can be caloulated by substitution of (5.50) and (5.36) in (5.19).
The latter equation must, in this case, be written in the following way:

Niltn ) = 5= Nyfta) exp (=) — exp (=]

+ Ny(tp) exp (=2,

Miltn ) = ST (1 = exp (=Mt foxp (=) = e (=)

+ gi? {(01 +a)ll ; exp (—Ash)]
. |

exp (—Af)

_ oufexp (—Ass) — exp (—A4h0)]
Ay = Ay

assuming that F, = 1. Or

H\,,_gff

’fk
1
5. GROWTH AND DECAY OF RADIOACTIVITY ?

A
Dyta, 1) = ¥} {A:"_ oI~ exp (=] fexp (=) = exp (= A]

+ (o3 + ol) [1 = exp (=Atp)] oxp (—Ay)

A
iy °f_"\ [exp (—Agts) — exp (—Asty)] exp (_,\,:,)}
3 1
(5.54)
Again, two important cases will be considered: first A, 3> A,, and exp

. '(~=Aglp) — O (isomerio form short-lived and irradiated to saturation).

This leads to: _
[
Dyftn, ) ~ oIy {-;;fexp (=240
+ (o1 + o) [1 — exp (—Agtu)] exp (—2yf)
A
- E;—.—' exp (—Aylp} exp (-‘\s‘)} _
oA
Dy(ts, t) % @INY . exp (=~ yf) {"1 T o1y, oXP (=)
- 1 1
+ (og + o]} [1 — exp (*f\a‘a)]}
D(ts, ) 7 @D 6xp (=) y) {o-.—:—:u — exp(=Ado)]
+ (o) + o)) [1 — exp (-As‘b)]}
Dylts, §) m N . exp (=) [1 — exp (~Asts)] (0’1 + ‘"1:\\—' + 0{)
. 1

IfA; 3 Ay theno, + o-,-:—' % o, and:

Diylty, 8} % (03 + o]}pdN][1 — exp (= Ayhy)] exp (=Af)| (5:59)

which has the same form as equation (5.37).
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If, however, Ay <€ Ay 80d exp (—A4ds) - 0 and exp (= Ayfs) = 0, a8
is the case for ¥Rh(n, y), the following simplification can be made:

Dyfts, t) & N7 [0 6xp (~Agd) + (o) + o}) exp (= 2,8)] | (5.50)

From the foregoing it is possibla to conclude that, in the case of
“isomerio activation” (Ay3> 2, and #,3>0.603/A,), the activation
cross sections Fyo, + ¢f must be summed when caleulating the
activity of radionuclides (3) as a function of irradiation and waiting
time. (See equations (5.52) and (5.53}).

Ezample: The total activity of **Ir must be caleulated with o] + Fyo,
'a 7005 + 2605 = 960b as cross section, and 0.603/74.44 in the satu-
ration factor (equations (5.62)).

(D) GrowrH OF A RADIOACTIVE DAUGHTER AFTER BRANCHING
ACTIVATION

Consider the case represented by the following activation scheme:

(2)
[
. (NG L
BN,
(3) =25 (4) — (5) (stable) (5.57)
Ezample: ‘
ﬂ'mGe

]
N
14 o ;",:.’- 0%
%y
1th

"Ge Py 7An m‘: 778e (stable)

Again, caleulation is possible in two different ways,

1. Solution of a Set of Leibnitz Equations

The growth of the number of atoms (4) as a function of irradiation
time is described by the following differential equation:

5. GROWTH AND DECAY OF BADIOACQTIVITY

ay
-"'T‘ = 'A'N' bnd A‘N‘ (5.58)

wheve N, is given by equation (5.50) or (5.51), if A, > A,. Substitution
of (5.51) in (6.58) yields a linear differential equation of the first order
(type equation (5.17)). Assuming Ay3> A5, A;3> A, 20d NY = N0 =
N? = 0, one obtains after integration between 0 and ,:

N (ts) = oxp (~Ado)pN Y Fyoy + o)) Fy x

[2 10 = exp (= o)) exp (A o) s

' F F 4
Nt) = "’ﬁ;‘ f':\j T (311 = exp (=As)]

= A1 = exp (A 1)]}

X N F + a! .
P2 %) 0t = emp (=2

= A1 — exp (—A)]}

The above equation equals equation (5.44). However the formation
of "Ge by way of its isomerio form is taken into account by addition
of the two reaction cross sections Fy0, and of.

D (ts)

(6.59)

2. Solution by the Bateman—Rubinson Equation

The method of Rubinson ean also be applied (see section III, C, 2),
considering two separate chains:

& A

A3, s ()2 () —s

(1) (4)—s and (1)—s 2) =

The solution for the first chain is given by equation (5.44); in the
above case, this equation must be written as follows:

Fypoi N}

Nyts) = m {AJ1 ~ exp (=Ayts)] — Ay[1 — exp (=~A )]}
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By application of equations (5.38) and (5.30) to the second chain,
ons finds:

Ay = 9loy + o})
A} = go

Ay= 2y A = Fy),
Agm= Ay A7 = Fyi,

Ag= 2,
c 1
1 A —A) (A, - A) (A~ Ay
1
= The — oy + o)1 s — 9o + 9] [Ag — 901 + )]
c 1
P A=A (Ay— A (A, - Ay
1
= Tos + o)) — At (A — Ag) (Ag = A)
o - 1
T AL S AN (A - A (A = AY)
1
" Tolos + o)) = Aal (A3 = Ag) (Ag = Ay)
1
Oy =

Ai—AJAr =AY (A=A

1
T To(o1 + %) — Add (Ag — AQ (As ~ AJ)

Solution of the second chain:

{
Nift) = NATATAT 3.Coexp (~Ad)

-:,:«2)
LAk
G

. L) "‘;a
5. GROWTE AXD DECAY OF RADIOACTIVITY ‘iz%

N'(ty) = Nipo, FodyFidy x

{ | oxp [—gp(oy + oi)ia)
[\ = plog + o))} [A; — @lo} + 1)) [Ae — glog + o3)]
exp (-A4ls)
[?(oa +01) = A (A = A} (A = Ay)
exp (= Aaf»)
[’P("x +07) = A (Ag = A (Ag — Ay)
+ exp (~—A,fs) }
[plos + o) = A] (A = AJ (A3 = A))

In this example Ay 31, A;> A, and if burn.up is negligible,
gloy + o)) € Ay, Ay, A, Hence, the above equation can be simplified:

L ] 1 —A
Nit) ~ N?W;F,MF.M [A,A,M . %xp (Ag )

exp(=Asfa) _ exp (—Ad) ]

Adg(Ag = A ARy = Ay)

’ 1 -2 A ~ad)]
FyFy N} a1y

Nylts) = O =N [Aq ~ Az — A exp (~Ayls) + A5 0xp (—Atp)]

. FyF N2
Nity) _.(!X:_“ﬂ A1 = oxp (= A4ts)] — Af1 — exp (= Ada)]}

The sum of the nuclides {4) by the two paths equals N}{t;) + NV (), or

FoNg(Fy0, + of)
- Ntp) = g ~ Ag) {Afl — exp (—A,t)]

= A1 — exp (—A)]}
This is identical with equation (5.69) found by the first calcula.txon
methed.
As already stated, there is no essential difference between equatlons
(5.44) and (5.59), if A;> A, and A,>> A,, that means: it does not
matter, whether the nuclides (4) (scheme (5.56)) are formed by way
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of the first chain or by way of the second chain, on condition that
¢ = Fuo, + o}, i.e. the effective reaction cross section is used.

This simplification reduces the radioactive decay to the simple
parent—-daughter relationship (3) _%_, (4) .2+, described by equation
(5.19). This equation must in this case be writte as follows:

N ftn ) = 52 Mot oxp (=) = oxp (=14

4+ N (ts) exp (~A4)
and this enables one to calculate the number of atoms (4) as a function

of irradiation time !, and of waiting time ¢ Substitution of {5.51) and
(5.44), which must be written here sa

pNY(o, + 1)

Hdta) = 3 =)

{AJ1 — exp (=Aytp)] — Al — exp (—A4)]}

' into the above equation gives (assuming that Fy = F; = 1):

'PN;(a; + 0'1)[1 — axp (—Agty)l[exp (—A,t) — exp (= A )]
4

wN"(cr1 + of)
FAv1 ] Vo] - -2
()“ A‘) { ‘[ exp ( S‘b)]

— A[1 —~ exp (—Adp)]} exp (= A )

(pNo(al + 0‘1)
AdAg -

- = Al —exp (—Aa‘b)] exp {—Ag)

4 A1l — exp (—Ayte)] exp (=2 )

) = Ayl — exp (—Agf)] exp (—A )}
Thus

N‘(‘bl ‘)

Nt t) = (A1 — exp (—Astp)] exp (~A)

¢N¥(o, ‘I‘ o))
{\4

-l - exp(-A.e»n exp (—Ad)}

Dint) = (A1 ~ exp (—Ayfs)] exp (—Xyf)

(5.60)
This has the same form as equation (5.45), o being replaced by o, + o}.

5. GROWTH AND DECAY OF BADIOACTIVITY

(E) *Ssconp orpER” REACTIONS

When neutron activation analysisis used to determine trace elements
at very low levels {ppm, ppb . . .}, high sensitivity techniques are neces.
sary. Sensitivity can be enhanced by using large reactor flures and long

‘irradiation times. But under these conditions neutron induced second

ordernuclear reactions canlead to significant interference in determining
a trace element as additional amounts of the measured radionuclide
can be produced (7).

This secord order interference is a aystematm error, produced by
successive reactions of the type:

IS

‘:,E (n, ) “"’éE {';: t:iE (n, ) ‘24:}

_— J.+1E (n’y).ns

(5.61)

or, schematically

(1) n, ¥ > (2) 8- Ft“l' (3) n'L, (4) B=(p Ixc)' (5) (table)
PR "-,00 P
B 1lu .."‘.’5 : o,y (5.62)
(3)

where F, is the fraciion of disintegrations of nuclides (2} producing
nuclides {3}. In most cases F'y = ) and F} = 0 (or Fy= Gand F; = 1),
furthermore o4 = 0, o, = 0 or are negligible: po, € Ay, po, €A (if
the flux ia not too high and burn.up negligible). However calculations
will be given for the general case.

Ezample: Second order reaction on a silicon matrix:
s Lo
38i (n, y) 38i —— 1P (n, y) ¥ —>

can give erroneous results in determining the phosphorus content by
neutron activation analysis, because the sume nuclide (**P) iz formed
as in the reaction

MP (n, ) ¥P ———
Other examples:
Iridiom in osmium: 108 (n, y) 1108 —— 9Ir (n, 3) MIr ——»

19117 (n, y) 1940r —— 5 (192Ir measured) (8)
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Thallium in mercury: 3**Hg (n, y) 3**Hg _‘_-_.., 203T] (n, y) 394T] ——»>
1091 (n, y) 34T] —— (2%T1 measured).

The rates of nuclide transformation in scheme (5.62) are deaeribed by
the following system of differential equations:

.—‘ = NIWI b A,N’ d N,q;a,_ (5'63)

A2y — :Wl

dN
f=NaWa—'\¢N¢—N&°4
b

These equations can be solved in the classical way, but the solution
for N, is laborious, since it is & much more complicated function
than N,. The next solution, for N, is even more tedious, So it is more
gimple to use directly the Batoman-Rubingon solution.

Ay =AY = g0y

Ay = Ay + poy
A3 = Py

A: = A = g0,

Agm= Ay + 9oy

Substituting these values in equation (£.38), gives
=4
N = Nigta,a,F .A.‘Elf-': exp (—Ats) {5.64)

where
1
(A: = Ax) (As - Al) (Aa - A:l)
: : )
- W+ ooy — ¢01) (pog — 901} (Ay + po; — @)

01”

Ll
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Cy= 1
(Ax - A:) (Aa - A:) (A( - Aa)
_ 1
(P01 — Ay — 903) (pog — Ay =~ 903) (Ag + @og — Ay ~ @0y)
Oy = !
(Ar = Ag) Ay — A (A — Ay
" (poy — o) (A + 903 — 993) (A, + 90, — @,
C;= -
(Ax - A‘) (A: - A;) (A: - Aa)
1

=(‘qu_)‘l-Wi)(’\l'l"?’al_Al—WC)(WI“Ai-WGI

The Bateman-Rubinson equation is tedious to solve by hand and
often leads to loss in significancs in performing the summations of the
exponential terms O exp (— A¢p). For this reason the sid of a com-
puter with double precision is highly desirable, A more detailed
diacussion about second order interforence as a source of error in
activation analyeis is given in Chapter 10, section IT, C, 3.
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